Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prostate ; 81(14): 1021-1031, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34320239

RESUMO

BACKGROUND: Vascular endothelial growth factor-A (VEGF-A) and its receptor, VEGF receptor-2 (VEGFR-2), represent a complex family of angiogenic molecules consisting of different ligands and receptors. Due to the importance of VEGF-A/VEGFR-2 signaling in tumor proliferation and angiogenesis, this study aimed to evaluate the protein and gene expression levels of VEGF-A and VEGFR-2 in canine prostate cancer (PC). METHODS: We analyzed VEGF-A and VEGFR-2 expression in 87 PC samples by immunohistochemistry and quantitative-polymerase chain reaction. PC samples were graded according to the Gleason score and the immunohistochemical staining for VEGF-A and VEGFR-2 was quantified using a selected threshold from the ImageJ Software. Microvascular density was assessed by cluster of differentiation 31 staining and counting the number of positive vessels. Additionally, the homology of VEGF-A and VEGFR-2 between humans and dogs was assessed, followed by the construction of a protein structure homology model to compare the tertiary structures of these proteins in both species. RESULTS: Negative to weakly positive expression levels of VEGF-A and VEGFR-2 were observed in the epithelial cells of the normal prostate (NP) and prostatic hyperplasia samples. In contrast, the canine proliferative atrophy and PC samples exhibited higher VEGF-A (p < .0001) and VEGFR-2 (p < .0001) compared to NP. Moreover, positive correlations between the expression levels of VEGF-A and VEGFR-2 (Spearman's coefficient (r) = .68, p = .013) and the expression levels of VEGF-A and VEGFR-2 proteins (r = .8, p < .0001) were also observed in the NP samples. Additionally, the patients with PC exhibiting higher VEGFR-2 expression levels experienced a shorter survival period (p = .0372). Furthermore, we found an association between the microvascular density and overall survival. Dogs with a higher number of vessels showed a shorter survival time. We further demonstrated that the VEGF-A and VEGFR-2 exhibited high homology between humans and dogs, and identified their protein structures in both species. CONCLUSIONS: In conclusion, VEGFR-2 appears to be an independent prognostic factor in animals with PC. VEGF-A and VEGFR-2 are highly conserved between humans and dogs, which can be investigated further in future cross-species studies to explore their therapeutic applications.


Assuntos
Doenças do Cão/metabolismo , Neovascularização Patológica/veterinária , Próstata/metabolismo , Neoplasias da Próstata/veterinária , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Doenças do Cão/patologia , Cães , Masculino , Gradação de Tumores , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Prognóstico , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
2.
Cancers (Basel) ; 13(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920045

RESUMO

Proliferative inflammatory atrophy (PIA) is an atrophic lesion of the prostate gland that occurs in men and dogs and is associated with a chronic inflammatory infiltrate. In this study, we retrospectively reviewed canine prostatic samples from intact dogs, identifying 50 normal prostates, 140 cases of prostatic hyperplasia, 171 cases of PIA, 84 with prostate cancer (PC), 14 with prostatic intraepithelial neoplasia (PIN) and 10 with bacterial prostatitis. PIA samples were then selected and classified according to the human classification. The presence of PIA lesions surrounding neoplastic areas was then evaluated to establish a morphological transition from normal to preneoplastic and neoplastic tissue. In addition, the expression of PTEN, P53, MDM2 and nuclear androgen receptor (AR) were analyzed in 20 normal samples and 20 PIA lesions by immunohistochemistry and qPCR. All PIA lesions showed variable degrees of mononuclear cell infiltration around the glands and simple atrophy was the most common histopathological feature. PIA was identified between normal glands and PC in 51 (61%) out of the 84 PC samples. PIA lesions were diffusely positive for molecular weight cytokeratin (HMWC). Decreased PTEN and AR gene and protein expression was found in PIA compared to normal samples. Overall, our results strongly suggest that PIA is a frequent lesion associated with PC. Additionally, this finding corroborates the hypothesis that in dogs, as is the case in humans, PIA is a pre neoplastic lesion that has the potential to progress into PC, indicating an alternative mechanism of prostate cancer development in dogs.

3.
Front Vet Sci ; 7: 583874, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195606

RESUMO

Mammary tumors affect intact and elderly female dogs, and almost 50% of these cases are malignant. Cell culture offers a promising preclinical model to study this disease and creates the opportunity to deposit cell lines at a cell bank to allow greater assay reproducibility and more reliable validation of the results. Another important aspect is the possibility of establishing models and improving our understanding of tumor characteristics, such as vasculogenic mimicry. Because of the importance of cancer cell lines in preclinical models, the present study established and characterized primary cell lines from canine mammary gland tumors. Cell cultures were evaluated for morphology, phenotype, vasculogenic mimicry (VM), and tumorigenicity abilities. We collected 17 primary mammary carcinoma and three metastases and obtained satisfactory results from 10 samples. The cells were transplanted to a xenograft model. All cell lines exhibited a spindle-shaped or polygonal morphology and expressed concomitant pancytokeratin and cytokeratin 8/18. Four cell lines had vasculogenic mimicry ability in vitro, and two cell lines showed in vivo tumorigenicity and VM in the xenotransplanted tumor. Cellular characterization will help create a database to increase our knowledge of mammary carcinomas in dogs, including studies of tumor behavior and the identification of new therapeutic targets.

4.
Front Genet ; 10: 1242, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850082

RESUMO

E-cadherin is a transmembrane glycoprotein responsible for cell-to-cell adhesion, and its loss has been associated with metastasis development. Although E-cadherin downregulation was previously reported in canine prostate cancer (PC), the mechanism involved in this process is unclear. It is well established that dogs, besides humans, spontaneously develop PC with high frequency; therefore, canine PC is an interesting model to study human PC. In human PC, CDH1 methylation has been associated with E-cadherin downregulation. However, no previous studies have described the methylation pattern of CDH1 promoter in canine PC. Herein, we evaluated the E-cadherin protein and gene expression in canine PC compared to normal tissues. DNA methylation pattern was investigated as a regulatory mechanism of CDH1 silencing. Our cohort is composed of 20 normal prostates, 20 proliferative inflammatory atrophy (PIA) lesions, 20 PC, and 11 metastases from 60 dogs. The E-cadherin protein expression was assessed by immunohistochemistry and western blotting and gene expression by qPCR. Bisulfite- pyrosequencing assay was performed to investigate the CDH1 promoter methylation pattern. Membranous E-cadherin expression was observed in all prostatic tissues. A higher number of E-cadherin negative cells was detected more frequently in PC compared to normal and PIA samples. High-grade PC showed a diffuse membranous positive immunostaining. Furthermore, PC patients with a higher number of E-cadherin negative cells presented shorter survival time and higher Gleason scores. Western blotting and qPCR assays confirmed the immunohistochemical results, showing lower E-cadherin protein and gene expression levels in PC compared to normal samples. We identified CDH1 promoter hypermethylation in PIA and PC samples. An in vitro assay with two canine prostate cancer cells (PC1 and PC2 cell lines) was performed to confirm the methylation as a regulatory mechanism of E-cadherin expression. PC1 cell line presented CDH1 hypermethylation and after 5-Aza-dC treatment, a decreased CDH1 methylation and increased gene expression levels were observed. Positive E-cadherin cells were massively found in metastases (mean of 90.6%). In conclusion, low levels of E-cadherin protein, gene downregulation and CDH1 hypermethylation was detected in canine PC. However, in metastatic foci occur E-cadherin re-expression confirming its relevance in these processes.

5.
Vet Sci ; 6(1)2019 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-30832371

RESUMO

This study aimed to investigate collagen (Coll-I, III, IV) and elastin in canine normal prostate and prostate cancer (PC) using Picrosirius red (PSR) and Immunohistochemical (IHC) analysis. Eight normal prostates and 10 PC from formalin-fixed, paraffin-embedded samples were used. Collagen fibers area was analyzed with ImageJ software. The distribution of Coll-I and Coll-III was approximately 80% around prostatic ducts and acini, 15% among smooth muscle, and 5% surrounding blood vessels, in both normal prostate and PC. There was a higher median area of Coll-III in PC when compared to normal prostatic tissue (p = 0.001 for PSR and p = 0.05 for IHC). Immunostaining for Coll-IV was observed in the basal membrane of prostate acini, smooth muscle, blood vessels, and nerve fibers of normal and PC samples. Although there was no difference in Coll-IV area between normal tissue and PC, tumors with Gleason score 10 showed absence of Coll-IV, when compared to scores 6 and 8 (p = 0.0095). Elastic fibers were found in the septa dividing the lobules and around the prostatic acini of normal samples and were statistically higher in PC compared to normal tissue (p = 0.00229). Investigation of ECM components brings new information and should be correlated with prognosis in future studies.

6.
Int J Biochem Cell Biol ; 108: 21-28, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30633985

RESUMO

The cancer cell population is heterogeneous, and cancer stem cells (CSCs) are important for tumor growth and maintenance. The CSC population is associated with different neoplastic characteristics, such as cell migration, resistance to apoptosis, radiation therapy and chemotherapy. To increase the knowledge of CSCs in canine prostate cancer (PC), we characterized CSC markers in canine PC tissues and tumorspheres. We performed immunohistochemistry of OCT3/4, Nestin, NANOG, CD44 and CD24 in 10 normal canine prostatic tissue samples, 10 prostatic hyperplastic (PH) tissue samples and 28 PC tissue samples. Then, we established two canine prostate cancer cell cultures and characterized the CSC profile of tumorspheres grown from these cultures. Normal and PH tissues were positive for Nestin, NANOG, CD44 and CD24 only in the basal cell layer. OCT3/4 was expressed in the luminal cells of normal and PH tissues. There was no significant difference in Nestin expression among the prostatic tissues. However, we found higher expression of NANOG and CD44 in canine PC tissues than that in normal and PH tissues. Tumorspheres from canine prostate cancer cells express OCT3/4, Nestin, NANOG and CD44, indicating that these markers may be potential cancer stem cell markers in canine PC. The results obtained can be useful to better characterize the stem cell population in canine prostatic cancer and to guide future studies in comparative oncology.


Assuntos
Antígeno CD24/metabolismo , Receptores de Hialuronatos/metabolismo , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/metabolismo , Nestina/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Autorrenovação Celular , Cães , Regulação Neoplásica da Expressão Gênica , Masculino , Fenótipo , Neoplasias da Próstata/patologia
7.
Front Oncol ; 9: 1445, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921690

RESUMO

Canine mammary gland tumor (CMT) is one of the most important tumors in intact female dogs, and due its similarity to human breast cancer (BC), it is considered a model in comparative oncology. A subset of mammary gland tumors can show aggressive behavior, and a recurrent histological finding is the presence of vasculogenic mimicry (VM). VM is a process in which highly aggressive cancer cells fuse, forming fluid-conducting channels without endothelial cells. Although, VM has been described in canine inflammatory carcinoma, no previous studies have investigated the prognostic and predictive significance of VM in CMT. Thus, this research aimed to investigate the prognostic significance of VM in vivo and the capacity of sorafenib to inhibit VM in vitro. VM was identified in situ in formalin-fixed paraffin-embedded CMT samples (n = 248) using CD31/PAS double staining. VM was identified in 33% of tumors (82/248). The presence of VM was more strongly related to tumor grade than to histological subtype. Patients with positive VM experienced shorter survival times than dogs without VM (P < 0.0001). Due to the importance of the VEGF-A/VEGFR-2 autocrine feed-forward loop in epithelial tumors, we investigated the association between VEGF-A and VEGFR-2 expression by neoplastic tumor cells and the associations of VEGF-A or VEGFR-2 expression with VM. Among the VM-positive samples, all (n = 82) showed high scores (3 or 4) for VEGF-A and VEGFR-2, indicating that VM was a common finding in tumors overexpressing VEGF-A and VEGFR-2. Thus, we cultured two CMT primary cell lines with VM abilities (CM9 and CM60) in vitro and evaluated the anti-tumoral effect of sorafenib. The CM9 cell line showed a half maximal inhibitory concentration (IC50) of 2.61 µM, and the CM60 cell line showed an IC50 of 1.34 µM. We performed a VM assay in vitro and treated each cell line with an IC50 dose of sorafenib, which was able to inhibit VM in vitro. Overall, our results indicated that VM was a prognostic factor for dogs bearing CMT and that sorafenib had an inhibitory effect on VM in CMT cancer cells in vitro.

8.
PLoS One ; 13(6): e0199173, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29894516

RESUMO

An unusual variant of prostate adenocarcinoma (PC) expressing nuclear p63 in secretory cells instead of the typical basal expression has been reported in men. Nevertheless, the biological behavior and clinical significance of this phenomenon is unknown. In dogs, this unusual PC subtype has not been described. In this study, p63 immunoexpression was investigated in 90 canine PCs and 20 normal prostate tissues (NT). The p63 expression pattern in luminal or basal cells was confirmed in a selected group of 26 PCs and 20 NT by immunohistochemistry and/or Western blotting assays. Eleven canine PC samples aberrantly expressing p63 (p63+) in secretory cells were compared with 15 p63 negative (p63-) cases in the context of several molecular markers (high molecular weight cytokeratin-HMWC, CK8/18, CK5, AR, PSA, chromogranin, NKX3.1, PTEN, AKT and C-MYC). P63+ samples were positive for CK5, HMWC and CK8/18 and negative for PSA, NKX3.1, PTEN and chromogranin. Five p63+ PCs were negative for AR, and the remaining six samples had low AR expression. In contrast, p63- PC showed AR and PSA positive expression in all 15 samples. Only five p63- PCs were positive for CK5. Both p63+ and p63- PC samples showed higher cytoplasmic AKT expression and nuclear C-MYC staining in comparison with normal tissues. Metastatic (N = 12) and non-metastatic (N = 14) PCs showed similar immunoexpression for all markers tested. In contrast to human PC, canine PC aberrantly expressing p63 showed higher expression levels of HMWC and CK5 and lower levels of NKX3.1. Canine p63+ PC is a very rare PC group showing a distinct phenotype compared to typical canine PC, including AR and PSA negative expression. Although in a limited number of cases, p63 expression was not associated with metastasis in canine PC, and cytoplasmic p63 expression was observed in animals with shorter survival time, similar to human PC cases.


Assuntos
Biomarcadores Tumorais/metabolismo , Imuno-Histoquímica/métodos , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cães , Masculino , Neoplasias da Próstata/patologia
9.
Res Vet Sci ; 118: 365-370, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29665565

RESUMO

NKX3.1/C-MYC cross-regulation has been reported in the normal human prostate, and loss of NKX3.1 and gain of C-MYC seem to be important events in prostate cancer development and progression. The dog can be an interesting model for human prostatic disease, and yet only one previous research study has shown deregulation of NKX3.1 and MYC in the canine prostate. To address the expression of NKX3.1 and C-MYC in different canine prostatic lesions, this study verified the gene and protein expression of NKX3.1 and C-MYC in normal canine prostatic tissues. We identified a 26 kDa band that corresponded to the NKX3.1 protein, while C-MYC showed a 50 kDa band on Western blotting analysis of all prostatic tissues. We observed that NKX3.1 protein and transcript were down-regulated in prostate cancer (PC) samples compared with non-neoplastic samples. We also observed that C-MYC protein was overexpressed in PC samples compared with normal (P = .001) and proliferative inflammatory atrophy (PIA) samples (P = .003). We found a positive correlation between NKX3.1 and C-MYC protein expression in normal and PIA samples. Interestingly, a negative correlation (NKX3.1 downregulation and MYC overexpression) was observed between NKX3.1 and MYC transcripts in PC. Thus, samples with higher C-MYC expression also exhibited higher NKX3.1 expression, which indicates the regulation of C-MYC by NKX3.1 protein. As in humans, these two genes and proteins were found to be related to canine prostate cancer. However, in contrast from what is observed in humans, in canine PC samples, the downregulation of NKX3.1 cannot be explained by DNA hypermethylation.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Cães , Proteínas de Homeodomínio , Humanos , Masculino , Proteínas Proto-Oncogênicas c-myc , Fatores de Transcrição/genética
10.
Res Vet Sci ; 106: 56-61, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27234536

RESUMO

The PTEN, AR, MDM2 and p53 protein network plays a central role in the development of many human cancers, thus eliciting the development of targeted cancer therapeutics. Dogs spontaneously develop tumours, and they are considered a good model for comparative oncology initiatives. Due to the limited information on these proteins in canine tumours, this study aimed to investigate gene and protein alterations in PTEN, AR, MDM2 and p53 in canine prostate cancer (PC). Protein expression was evaluated by immunohistochemistry (15 normal, 22 proliferative inflammatory atrophy (PIA) and 19 PC samples) and Western blotting (2 normal prostate tissue, 2 BPH, 2 PIA samples and 2 PC samples) and gene expression by RT-qPCR (10 normal, 10 PIA and 15 PC samples) of formalin-fixed tissue. We identified nuclear and cytoplasmic expression of PTEN and p53 in all samples, with only nuclear staining found for MDM2 and AR. Our results revealed high expression of MDM2 in PC and PIA samples compared to normal samples, whereas PTEN, P53 and AR expression was down-regulated in PC compared to normal tissue. All tumour samples (n=19) showed loss of nuclear PTEN expression, and all cancer mimickers showed positive nuclear staining. Therefore, nuclear PTEN staining could be a good diagnostic marker for differentiating between malignant lesions and mimickers. Canine prostate carcinogenesis involves increased expression of MDM2 in association with decreased expression of PTEN, p53 and AR, such as occurs in hormone refractory PC in men. Thus, dogs may be an important model for studying advanced stage PC.


Assuntos
Carcinogênese , Carcinoma/veterinária , Doenças do Cão/genética , Proteínas de Neoplasias/genética , Neoplasias da Próstata/veterinária , Animais , Western Blotting/veterinária , Carcinoma/patologia , Doenças do Cão/patologia , Cães , Expressão Gênica , Imuno-Histoquímica/veterinária , Masculino , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/patologia
11.
Res Vet Sci ; 100: 176-81, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25796368

RESUMO

The epithelial-mesenchymal transition (EMT) is a fundamental event responsible for the invasiveness and metastasis of epithelial tumours. The EMT has been described in many human cancers, but there are few reports of this phenomenon in veterinary oncology. Due to the importance of this process, the current study evaluated mesenchymal and epithelial marker protein expression in prostate lesions from dogs. Our results indicate both a loss of E-cadherin and translocation of ß-catenin from the membrane to the cytoplasm and nucleus in the tumour group. Vimentin expression in the tumour group was higher than in normal tissue. All of the metastases were positive for prostate-specific antigen, pan-cytokeratin and E-cadherin, although fewer positive cells were present than in the primary tumours. The immunohistochemical results showed a loss of epithelial markers and a gain of a mesenchymal marker among metastatic cells, suggesting that the EMT occurs during the metastatic process of canine prostate carcinoma.


Assuntos
Carcinoma/veterinária , Doenças do Cão/fisiopatologia , Transição Epitelial-Mesenquimal , Neoplasias da Próstata/veterinária , Animais , Biomarcadores/metabolismo , Caderinas/metabolismo , Carcinoma/fisiopatologia , Carcinoma/secundário , Doenças do Cão/etiologia , Cães , Masculino , Neoplasias da Próstata/fisiopatologia , Neoplasias da Próstata/secundário , Vimentina/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...